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I develop machine learning methods for reasoning about real-world events.

The ability to reason about real-world events is crucial for effective decision-making in various domains.
Figure 1 shows an example in education. Similarly, reasoning about user activities on social media plat-
forms, such as their posts, likes, and shares, can provide insights for predicting and responding to social
events. In healthcare, reasoning about medical events like diagnosis and treatments can assist human doc-
tors in planning future hospital visits and designing personalized exercise routines. I envision a future where
computers empowered by machine learning can reason about real-world events. In pursuit of this vision, my
research is dedicated to addressing key problems in the following research areas:

time

Figure 1: An AI agent in education, which is empowered
by machine learning and can assist human teachers. It
leverages diverse sources of information (e.g., textbooks
and online articles) to acquire knowledge about the sub-
ject matter and how to improve students’ learning expe-
rience. Given the past events of a student (e.g., previous
lessons and test results), the agent applies relevant knowl-
edge and reasons about the potential outcomes of possi-
ble interventions. It then plans a personalized course of
lessons and tests, which it suggests to the human teacher,
to enhance the student’s performance and enjoyment.

• Event sequence modeling. Modeling event sequences can discover how past events influence future events,
thus providing valuable insights for predicting the future. For example, by learning from historical finan-
cial data, a model may identifiy useful patterns such as “airline stocks often rise after oil price drops”.

In this area, my research has introduced a family of neural and neuro-symbolic models that can capture
complex patterns in real data and significantly outperform previous models on the task of event predic-
tion. In addition, my research leverages principles from classical statistics to discover opportunities for
accelerating both the training and inference processes of these neural models. Please see §1.

• Natural language understanding. Knowledge about real-world events is commonly documented by human
experts in text forms, such as textbooks and news articles. Natural language technologies are a promising
means to empower computers to acquire such knowledge and use it for real-world reasoning.

In this area, my research develops deliberative reasoning methods that integrate modern large language
models (LLMs) with classical logical inference methods, which combine the desirable properties of both
paradigms and thus can outperform each individual paradigm on complex reasoning tasks. Please see §2.

• World model learning. Understanding real-world dynamics is an essential property of intelligent agents
for complex real-world applications. I have planned future research in pursuit of world models, including
projects that embed LLMs into classical reinforcement learning (RL) frameworks, empowering LLMs to
learn world dynamics through real-world interactions. Please see §3.

Commercial and broader public engagement and impact. I am passionate about broadening the impact
of my work through sustained collaborations beyond academia. While my work has primarily centered on
academic research, I place a strong emphasis on the practical applicability of my work. Particularly, I take
care to design my methods in a way that allows them to be seamlessly integrated into large-scale production
settings. My methods for event sequence modeling have been integrated into real-world products such as
Alipay, the world’s largest mobile digital payment platform, which serves more than one billion users. This
emphasis has also fostered extensive collaboration with leading tech companies and has attracted research
funding from them. Looking forward, I will seek out opportunities to collaborate with external organizations
in transforming fundamental research into real-world applications, aiming to make a broader societal impact.
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1 Neural Probabilistic Methods for Event Sequence Modeling
The topic of my PhD thesis is event sequence modeling, with a particular emphasis on modeling the dis-
tribution p(sequence of events). Knowing p(sequence of events) is essential for probabilistic inference:
p(future events | past events) enables the prediction of future events; similarly, p(unobserved events |
observed events) enables the imputation of missing events. For example, by analyzing future hospital visit
trajectories drawn from p(future visits | a patient’s past visits), one can propose answers to a range of ques-
tions such as “When will the patient’s next visit occur?” (by averaging the times of the first future visits
across all trajectories) and “How likely is the patient to survive the next three months?” (by determining the
frequency of death events within the next three months from sampled future trajectories).

Effective neural probabilistic models. We1 developed the neural Hawkes process (NHP) [15], one of
the first neural event sequence models. It employs a novel continuous-time LSTM to capture the complex
patterns in which past events may influence the future. On a range of real-world datasets including MIMIC
Clinical Database [28], NHP has achieved significant improvements over previous state-of-the-art in predict-
ing future events given the past (e.g., given a patient’s electronic health records, predicting when the patient
will visit the hospital again and which department the patient will visit). We then developed the neural
Datalog through time (NDTT) [12], a neural-symbolic extension of NHP. NDTT uses a temporal deductive
database to precisely and efficiently track domain-specific knowledge about events and their participants,
configuring a structurally sparse neural architecture that can scale up to domains that have millions of types
of events. Further, we developed Transformer versions of both NHP and NDTT [11], which enhance per-
formance and efficiency. These models have become standard baselines for comparing new methods [2, 23]
and are often integrated as a core part in models for downstream tasks such as anomaly detection [22, 24].

Efficient training and inference. Training a neural event sequence model and performing inference with
it present non-trivial challenges. While maximum likelihood estimation (MLE) is a standard training method
for probabilistic models in general, estimating the likelihood can be computationally expensive for event se-
quence models. To address this issue, we developed a novel training method [13] based on the principle of
noise-contrastive estimation (NCE). Our NCE method provably maximizes the likelihood without comput-
ing it. As a result, our method significantly reduces the computational cost compared to MLE in practice.
This method has enabled us to develop HYPRO [10], the first energy-based event sequence model: its likeli-
hood is intractable to compute but can be bypassed by our NCE method. HYPRO significantly outperforms
autoregressive models in long-horizon event prediction, the task of predicting multiple future events over a
time period given the past. For inference, we introduced the first general sequential Monte Carlo method [14]
that efficiently approximates p(unobserved events | observed events).

Event-based decision making. An important application of event sequence models is their integration
into RL agents to learn intervention policies. Our research has demonstrated that event sequence models
are useful in both classical model-based RL frameworks [4, 8] and more recent goal-conditioned frame-
works [6]. For example, in a simulated kidney transplantation environment, our RL agent equipped with an
event sequence model can learn to plan personalized follow-up schedules for kidney transplant recipients,
improving their survival by 8% [8]. Timing is crucial in such scenarios: a timely visit is necessary for mon-
itoring a patient and handling adverse reactions, but an overly dense schedule may be a waste of resources.
Empowered by an event sequence model, our RL agent learns a sensible policy, scheduling more frequent
visits for recipients with higher levels of creatinine (an indicator for risk of graft rejection).

2 Reasoning with Large Language Models
Since starting my current Research Assistant Professor position, I have been working on harnessing and
enhancing the reasoning capabilities of LLMs. Modern LLMs such as GPTs have demonstrated strong

1Throughout this statement, “we” refers to “my collaborators and I” that coauthored the paper being discussed in the context.
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Hypothesis: Ava is blessed.
F−1: Ava is a queen.
F−2: Ava is just.
F−3: Just queens are good.
F−4: Good people are blessed.

Listing 1: A multi-step logical reasoning
problem, where “F” means “fact”.
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Figure 2: LEAP works on the
problem in Listing 1. At each
step, an LLM proposes multi-
ple deductions. Then we look
ahead into possible future steps
of each proposal, and rank these
proposals based on the looka-
head information.

performance on various tasks that require knowledge memorization and generalization, such as answering
science questions [18, 25]. The training data of LLMs includes a large amount of text discussing knowledge
about real-world events and their participants. I am interested in developing machine learning methods that
enable LLMs to reflect on such knowledge and reason about real-world events.

Challenges arise as LLMs are not good solvers for problems that require deliberative reasoning. Recent
research has shown that LLMs struggle to solve multi-step logic puzzles and multi-digit multiplication [16].
My research investigates a new approach that uses LLMs as proposers. In particular, I integrate LLMs
with other machinery: LLMs propose solutions or logical pathways towards solutions; the other machinery
analyzes and utilizes LLM-generated proposals to construct a final solution.

LLMs as proposers of reasoning paths. A key problem in this area is multi-step logical reasoning, the
problem of deducing new facts from known information and determining the truth value of a hypothesis.
Listing 1 shows a simple example. We developed LEAP [7], the first LLM-based logical reasoning system
that performs explicit lookahead planning during inference. For a hypothesis, it performs multiple steps
of deduction to reach a conclusion about its truth value: at each step, an LLM proposes multiple ways to
continue the deduction; LEAP rolls out future steps of each LLM-proposed way, and only pursues those
most conducive to discovering the truth value of the hypothesis. Through explicit lookahead planning,
LEAP is able to make well-informed decisions at each step. It achieves high accuracy on multiple bench-
mark datasets, outperforming methods that use LLMs as independent solvers, including chain-of-thought
prompting [21]. We are currently extending LEAP to address more complex reasoning problems.

We generalized the “lookahead” idea to designing a novel Transformer architecture [1]. Our Lookahead
Transformer estimates the next-token distribution by drawing multiple continuations of the past from an
ordinary Transformer and attending to these continuations to consider the potential sentences resulting from
different next-token choices. On multiple tasks including morphological inflection and Boolean satisfiabil-
ity, our new model is able to outperform the ordinary Transformer of comparable size.

LLMs as proposers of cause events. Following the philosophy of “LLMs as proposers”, we developed
LAMP [5], the first framework that integrates an LLM into the prediction process of an event sequence
model. Event sequence models struggle to make accurate predictions on large-scale datasets of real-world
socio-political events such as GDELT [30] and ICEWS [29]. Understanding the relationships between these
events requires a substantial amount of world knowledge, which can not be inferred solely from previous
events. LAMP leverages an LLM to fill in the missing piece: it draws candidate predictions from an event
sequence model; instructed by a few expert-annotated demonstrations, the LLM learns to propose cause
events for each candidate; a search module identifies any previous events that match the LLM-proposed
causes; a ranking model assesses the candidate predictions by analyzing retrieved events and ranks them
based on the strength of the supporting evidence. LAMP significantly outperforms state-of-the-art event
sequence models on both GDELT and ICEWS, achieving accuracy improvements of several times.

3 Future: From Language Models Towards World Models
A goal of my research is to enable intelligent agents—like what’s shown in Figure 1—that assist human
users in real-world tasks, anticipating consequences of decisions and suggesting high-reward actions. LLMs
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emerge as a promising means to reach this goal: they are able to learn useful patterns from training data and
can generate contextually sensible output, showing a potential to work as building blocks of world models.
However, they have key limitations: what they have learned are patterns of text, but not dynamics of the
world; their bounded context windows can not handle very long inputs; they often hallucinate. Over the
next five years, I plan to continue basic research in the areas of §1 and §2, as well as study new problems
related to addressing these limitations. Some problems require expertise out of my primary focus, and I will
actively seek collaboration with experts in related areas.

3.1 Situated Adaptation of LLMs to learn real-world dynamics

To enable LLMs to learn real-world dynamics, I plan to situate LLMs within decision-making pipelines in
real-world domains such as robotics, allowing them to interact with environments and adapt their behavior
in response to feedback. This idea draws insights from the success of the “LLMs as proposers” principle in
§2. It also opens up research opportunities to draw insights from classical model-based RL methods [27]:
an LLM can function as an environment model and facilitate policy learning by offering a reasonable prior
over the environment dynamics; the policy generates actions that directly interact with the environment
and collects feedback to improve the LLM. I have established collaboration with robotics experts at TTIC.
Our recent research [3] demonstrates that an LLM can learn dynamics of a compact environment and en-
hance a robot’s ability to perform multi-step planning. Precisely, an LLM is instructed—with human-crafted
examples—to maintain an estimate of the state of the environment, which is often unobservable, and track
its transition as new actions are taken. Then our planner conditions each action on the estimate of the current
state. This method outperforms strong baseline methods including Code-as-Policies [19], achieving signif-
icantly higher success rates on a range of multi-step planning tasks such as object manipulation. Looking
ahead, I am interested in devising methods that enable LLMs to learn more complex world dynamics.

3.2 Inductive Learning to handle unbounded experiences with bounded context windows

The bounded context windows of LLMs restrict their ability to handle long inputs. Consequently, when
performing a long-term task (such as being a life-long assistant or companion), LLMs may fail to retain
the full context, thus making poorly-informed decisions. Humans also have limited memory capacities. But
humans often perform inductive learning, summarizing long and detailed experiences into short and abstract
guidelines. Here an experience refers to any form of interaction with an environment, ranging from simple
cases of “placing a cup” to complex tasks of “winning a competitive game”. A guideline is a general rule that
applies to many experiences, such as “player 1 usually uses strategy X in this game.” Guidelines take less
memory but can still inform decision-making in future similar situations. I plan to develop machine learning
methods that enable LLMs to perform human-like inductive learning. An LLM maintains a repository of
guidelines, and updates the repository as it has new experiences. As more experiences accumulate, the
repository will expand, albeit at a slower pace than the accumulation of experiences. The repository is
structured, allowing for effective and efficient retrieval. Retrieved guidelines will take significantly fewer
tokens within the context window compared to using the relevant previous experiences.

3.3 Representation Analysis and Engineering to mitigate hallucination

Recent research has found that the internal representations of deep neural networks can form semantically
meaningful structures [20, 26] and can be used to control the output of the networks [17]. My research [9]
discovers the formation of linearly separable clusters in the internal representations of LLMs, where each
layer exhibits a pattern of clusters useful for certain downstream tasks. Leveraging this discovery, we devel-
oped a transfer learning method that only adapts certain suitable layers to a given task, significantly reducing
computation cost [9]. Moving forward, I am intrigued by the potential of engineering the internal represen-
tations of LLMs to mitigate hallucination. Conceptually, we may identify patterns of representations (e.g.,
clusters and subspaces of each layer) responsible for this undesirable behavior and then modify the patterns.
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Hassabis, Been Kim, Ulrich Paquet, and Vladimir Kramnik. “Acquisition of chess knowledge in
alphazero”. In: Proceedings of the National Academy of Sciences (PNAS) (2022).

[21] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. “Chain-of-thought prompting elicits reasoning in large language models”. In: Advances
in Neural Information Processing Systems (NeurIPS). 2022.

[22] Siqi Liu and Milos Hauskrecht. “Event Outlier Detection in Continuous Time”. In: Proceedings of
the International Conference on Machine Learning (ICML). 2021.

[23] Song Wei, Shixiang Zhu, Minghe Zhang, and Yao Xie. “Goodness-of-fit test for mismatched self-
exciting processes”. In: Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS). 2021.

[24] Alex Boyd, Robert Bamler, Stephan Mandt, and Padhraic Smyth. “User-Dependent Neural Sequence
Models for Continuous-Time Event Data”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2020.

[25] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey
Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. “Language Models are Few-Shot Learners”. In: arXiv preprint arXiv:2005.14165
(2020).

[26] Vardan Papyan, XY Han, and David L Donoho. “Prevalence of neural collapse during the terminal
phase of deep learning training”. In: Proceedings of the National Academy of Sciences (PNAS) (2020).

6

https://arxiv.org/abs/2006.16723
https://arxiv.org/abs/2006.16723
https://arxiv.org/abs/2011.00717
https://arxiv.org/abs/2011.00717
https://arxiv.org/abs/1905.05570
https://arxiv.org/abs/1905.05570
https://arxiv.org/abs/1612.09328
https://arxiv.org/abs/1612.09328
https://arxiv.org/abs/2305.18654
https://arxiv.org/abs/2305.18654
https://arxiv.org/abs/2210.13382
https://arxiv.org/abs/2303.08774.pdf
https://arxiv.org/abs/2209.07753
https://www.pnas.org/doi/abs/10.1073/pnas.2206625119
https://www.pnas.org/doi/abs/10.1073/pnas.2206625119
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/1912.09522
https://proceedings.mlr.press/v130/wei21a.html
https://proceedings.mlr.press/v130/wei21a.html
https://arxiv.org/abs/2011.03231
https://arxiv.org/abs/2011.03231
https://www.pnas.org/doi/full/10.1073/pnas.2015509117
https://www.pnas.org/doi/full/10.1073/pnas.2015509117


Research Statement Hongyuan Mei

[27] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[28] Alistair E. W. Johnson, Tom J. Pollard, Lu Shen, H. Lehman Li-wei, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G. Mark. “MIMIC-III, a
Freely Accessible Critical Care Database”. In: Scientific data (2016).

[29] Elizabeth Boschee, Jennifer Lautenschlager, Sean O’Brien, Steve Shellman, James Starz, and Michael
Ward. ICEWS Coded Event Data. 2015.

[30] Leetaru and Schrodt. “Gdelt: Global data on events, location, and tone, 1979–2012”. In: ISA annual
convention (2013).

7

https://www.nature.com/articles/sdata201635
https://www.nature.com/articles/sdata201635
https://doi.org/10.7910/DVN/28075
http://data.gdeltproject.org/documentation/ISA.2013.GDELT.pdf

	Neural Probabilistic Methods for Event Sequence Modeling
	Reasoning with Large Language Models
	Future: From Language Models Towards World Models
	Situated Adaptation of LLMs to learn real-world dynamics
	Inductive Learning to handle unbounded experiences with bounded context windows
	Representation Analysis and Engineering to mitigate hallucination


