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MVoaqel

e \What is Model
* A set of assumptions over data
e [he distribution constructed over data

* Defined based on the set of assumptions



MVoaqel

 Observe a sequence of HHTTTH...

* Tolearn P(X =H)=60;and P(X =1T) = 6
¢ X,, ~ Py(X) where they are i.i.d.
* Probabillity of any sequence of length N

* Po(X1,Xo,..., Xn) =[I_, Po(X,)

n=1



| Ikelihooao

Py(X1, X2, ..., Xn) = [10_, Po(X,)
likelihood function of § given observations { X, }2_,
We want our model to well explain the data

We estimate § by maximizing likelihood

So 0 is Maximum Likelihood Estimate



Cross-Entropy

We work in log-space to prevent undertlow

logPQ(XlaXQV")XN):S:N lOgPQ(Xn)

n=1

log-likelihood function
Maximize log-likelihood — Minimize cross-entropy

Or loss £ = — 31", log Py(X,,)




Optimization

Find § to minimize loss ¢ = — S°°_ . log Py(X,,)

sn=1

We call it optimization
But HOW?

|s there any properties that makes our life easier?



Convexity

 Aset C is convex it and only it
* Va,be C, da+ (1 —AN)be Ctorallx e (0,1)

* Line, segment, circles, half-plane, etc



Convexity

* A function f(x)is convexon C if and only if

* V1,20 € Cand X € (0,1)

o f(AzT1+ (1= A)z2) < Af(z1) + (1= A)f(x2)
e Strictly convex if

* f(Az1+ (1 = A)z2) < Af(z1) + (1= A)f(x2)



Convex Optimization

« EASY to minimize convex function on convex set
* Any local minimum is a global minimum.
e Strictly convex — at most one global minimum.
* Solve by setting first-order derivative to O

e df(x)/dx =0 for scalarz

e Vxf(x)=0 for vector x



Convex Functions

« Commonly used convex functions
o Affine f(x) =ax +b
e Quadratic f(x) = ax® + bx + ¢ where a > 0
* Negative logarithm f(x) = —log(x)

e Sum of convex functions!



Unconstraineao

 One example:

e f(x)=a2°—4x+5
o df(x)/dx=2x—4=0

® Qj:2



Coin Flip
Observe a sequence of HHTTTH...
N=100 c(H)=46 «¢(T)=N —c(H)=>54
SO. ..

(=—S"" log Py(X,)

n=1

¢ = —c(H)log P(H) — c¢(T)log P(T)

¢ = —c(H)logt; — c(T)log 65



Coin Flip
o001 = —c(H) /0, and 9¢/005 = —c(T) /05
01 =60, =007
Probabilities can NOT go wildly!
01+ 65 =1
SO it is a constrained optimization problem

How do we deal with it?



e g=0,:+65,—1

Constrained

* {=—c(H)logt; — c(T)log 6

e Optima at tangent point
e VI = AVg

¢« g=0 Qy\ |




. agrangian

 Optima at tangent point

+ Why V/ = AVg ?

AN
e Normal vector of ¥ — V/
 Normal vector of g — Vg

N

\/\’

e Parallel to each other




. agrangian

Constrained —> Unconstrained

L =/ — Ag with parameters 64,05, \

* VL=VI{—-)XAVg=0ie VI{=AVg

e OL/OA=—g=0ie. g=0

Converted by introducing Lagrangian Multiplier

Still convex!



Coin Flip
L=—c(H)logt; —c(T)logfhy — A(01 + 65 — 1)
0L/001 = —c(H)/01 — X =0
0L/005 = —c(T)/05 — X =0
OL/OAN=—01 —03+1=0
Now, let's do high school review

A=—N 6 =c(H)/N 0y =c(T)/N =1—c(H)/N



Recitation Question

Recitation Loglin 1(a)

Bwa = 1, Bwee = 2, Kiki = 3

Observe ¢(1)/N = 0.3 ¢(2)/N =0.20 ¢(3)/N =0.5
{ = —c(1)log 6, — c(2)log Oy — c¢(3) log O3

01 +605+05=1

Now do your exercise!



Recitation Question

* L=F—)Ag

e [ — —C(l) 10g 91 — 0(2) log (92 — 6(3) log (93

o g:@l+92—|—93—1

e Vie{1,2,3} 9L/00; = —c(i)/0; — X =0
e OL/ON=—0; — 0y —05+1=0

e A= —c(1) —¢(2) —¢(3) = —N and 6; = ¢(i)/N



Inequality

Wait! We may forget something...

Vie{1,2,3} 0<6, <1

In NLP class, no worry about this

But let's go beyond!



Inequality

 One example:
e f(z)=2x*—-4x+5
c <3

e Pretend to NOT know the answer...



Inequality

e f(z)=a*—4x+5

e <3

(AR S




Inequality

" >3 » 7 <3

* At the boundary! * Unconstrained again!

/
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Another Example

e Optima out of constraints

e Atthe bo

&

undary!
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e Optima under constraints

* Unconstrained again!
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Conversion

" L= f(x)+ pg(r)

* f(zx)=x°—4x+5 v
. g(x)=2—3 »

* What we can say for ™, *

V(@) +p"Vg(a™) =0
» g(x") <0 X

e And what?”




Conversion

* prg(a”) =0and p* >0 f

o Why? v
o« Ifpu* >0

. g(x*) — () (boundary!)

e Otherwise min £ = —oo

* Unconstrained again!




KKT Conditions

° ) A
» g(z") <0 v
» prg(a”) =0 »

e KKT conditions X




KKT Conditions

V() + ' Vg(a*) =0 ¢ 2t — 4+t =0

* g(x¥) <0 . ¥ <3

c prg(z7) =0 (@7 = 3) =

e 1" 2>0 e pt >0

« KKT conditions « (1)@B)—> p" €40, -2}
(4) —> p" =



KKT Conditions

Vi(z*)+uVg(z™)=0
g(z”) <0

prg(z™) =0

T

KKT conditions

They are very important
In machine learning
Meet KKT conditions
Close duality gap

Out of our scope for now

But crucial for SVM



Non-Convex

* What if NON-convex?
« SGD or EM
* Next lecture (when Jason start talking about EM)

* He will show you guys a really nice example!



Thanks!

Special Acknowledgement to Xiaochen Li



Appendix

e Sum of convex functions
My notes
* https://docs.google.com/document/d/

1yA20bUuxXcxC84U1D4IfSyijFthHDUNkKNy3_Fr
witCQ/edit?usp=sharing



https://docs.google.com/document/d/1yA2obUuxXcxC84U1D4lfSyijFthHDUnkKNy3_FrwtCQ/edit?usp=sharing

