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Model
• What is Model 

• A set of assumptions over data  

• The distribution constructed over data 

• Defined based on the set of assumptions



Model
• Observe a sequence of HHTTTH… 

• To learn                           and  

•                      where they are i.i.d. 

• Probability of any sequence of length  

•  

N

P✓(X1, X2, . . . , XN ) =
QN

n=1 P✓(Xn)

Xn ⇠ P✓(X)

P (X = H) = ✓1 P (X = T ) = ✓2



Likelihood
•         

• likelihood function of   given observations  

• We want our model to well explain the data 

• We estimate    by maximizing likelihood 

• So    is Maximum Likelihood Estimate

P✓(X1, X2, . . . , XN ) =
QN

n=1 P✓(Xn)

✓ {Xn}Nn=1

✓

✓̂



Cross-Entropy
• We work in log-space to prevent underflow 

•   

• log-likelihood function  

• Maximize log-likelihood — Minimize cross-entropy  

• Or loss

logP✓(X1, X2, . . . , XN ) =

PN
n=1 logP✓(Xn)

` = �
PN

n=1 logP✓(Xn)



Optimization
• Find    to minimize loss  

• We call it optimization 

• But HOW?  

• Is there any properties that makes our life easier?

✓̂ ` = �
PN

n=1 logP✓(Xn)



Convexity
• A set     is convex if and only if 

•               ,                              for all  

• Line, segment, circles, half-plane, etc 

C

8a, b 2 C �a+ (1� �)b 2 C � 2 (0, 1)



Convexity
• A function        is convex on     if and only if 

•                    and                 

•   

• Strictly convex if 

•  

� 2 (0, 1)

f(x) C

f(�x1 + (1� �)x2)  �f(x1) + (1� �)f(x2)

f(�x1 + (1� �)x2) < �f(x1) + (1� �)f(x2)

8x1, x2 2 C



Convex Optimization
• EASY to minimize convex function on convex set  

• Any local minimum is a global minimum.  

• Strictly convex — at most one global minimum. 

• Solve by setting first-order derivative to 0 

•                       for scalar 

•                     for vector 

df(x)/dx = 0

r
x

f(x) = 0

x

x



Convex Functions
• Commonly used convex functions  

• Affine  

• Quadratic                                  where  

• Negative logarithm  

• Sum of convex functions! 

f(x) = ax+ b

f(x) = ax

2 + bx+ c a > 0

f(x) = �log(x)



Unconstrained
• One example:  

•   

•   

•  

f(x) = x

2 � 4x+ 5

df(x)/dx = 2x� 4 = 0

x = 2



Coin Flip
• Observe a sequence of HHTTTH… 

•    

• So…  

•   

•   

•  

N = 100 c(H) = 46 c(T ) = N � c(H) = 54

` = �
PN

n=1 logP✓(Xn)

` = �c(H) logP (H)� c(T ) logP (T )

` = �c(H) log ✓1 � c(T ) log ✓2



Coin Flip
•                                 and    

•                      ?  

• Probabilities can NOT go wildly! 

•   

• So it is a constrained optimization problem 

• How do we deal with it?

@`/@✓1 = �c(H)/✓1 @`/@✓2 = �c(T )/✓2

✓1 = ✓2 = 1

✓1 + ✓2 = 1



Constrained
•                 

•   

• Optima at tangent point 

•   

•  

` = �c(H) log ✓1 � c(T ) log ✓2

g = ✓1 + ✓2 � 1

r` = �rg

g = 0



Lagrangian
• Optima at tangent point 

• Why                   ? 

• Normal vector of    — 

• Normal vector of    — 

• Parallel to each other

r` = �rg

`

g rg

r`



Lagrangian
• Constrained —> Unconstrained             

•                    with parameters  

•                                   i.e.  

•                             i.e. 

• Converted by introducing Lagrangian Multiplier 

• Still convex!

g = 0

L = `� �g ✓1, ✓2,�

rL = r`� �rg = 0

@L/@� = �g = 0

r` = �rg



Coin Flip
•                        

•                    

•   

•   

• Now, let’s do high school review 

•               

L = �c(H) log ✓1 � c(T ) log ✓2 � �(✓1 + ✓2 � 1)

@L/@✓1 = �c(H)/✓1 � � = 0

@L/@✓2 = �c(T )/✓2 � � = 0

@L/@� = �✓1 � ✓2 + 1 = 0

� = �N ✓1 = c(H)/N ✓2 = c(T )/N = 1� c(H)/N



Recitation Question 
• Recitation Loglin 1(a) 

• Bwa = 1, Bwee = 2, Kiki = 3  

• Observe                                                 

•   

•   

• Now do your exercise!

c(2)/N = 0.20 c(3)/N = 0.5c(1)/N = 0.3

` = �c(1) log ✓1 � c(2) log ✓2 � c(3) log ✓3

✓1 + ✓2 + ✓3 = 1



Recitation Question 
•   

•   

•                                                   

•    

•   

•                                                  and

` = �c(1) log ✓1 � c(2) log ✓2 � c(3) log ✓3

L = `� �g

g = ✓1 + ✓2 + ✓3 � 1

8i 2 {1, 2, 3} @L/@✓i = �c(i)/✓i � � = 0

� = �c(1)� c(2)� c(3) = �N ✓i = c(i)/N

@L/@� = �✓1 � ✓2 � ✓3 + 1 = 0



Inequality
• Wait! We may forget something…  

•   

• In NLP class, no worry about this 

• But let’s go beyond! 

8i 2 {1, 2, 3} 0  ✓i  1



Inequality
• One example:  

•   

•   

• Pretend to NOT know the answer…  

f(x) = x

2 � 4x+ 5

x  3



•    

•  

Inequality
f(x) = x

2 � 4x+ 5

x  3



Inequality
•   

• At the boundary!

•   

• Unconstrained again!

x

⇤  3
x

⇤
> 3



• Optima out of constraints 

• At the boundary!

Another Example
• Optima under constraints 

• Unconstrained again!



Conversion
•   

•   

•   

• What we can say for 

•   

•   

• And what?

f(x) = x

2 � 4x+ 5

g(x) = x� 3

x

⇤
, µ

⇤

L = f(x) + µg(x)

g(x⇤)  0

rf(x⇤) + µ

⇤rg(x⇤) = 0



Conversion
•                           and 

• Why? 

• If  

•                      (boundary!) 

• Otherwise  

• If   

• Unconstrained again!

µ

⇤
g(x⇤) = 0 µ⇤ � 0

g(x⇤) = 0

µ⇤ = 0

µ⇤ > 0

minL = �1



KKT Conditions
•                           

•                            

•   

•   

• KKT conditions

µ

⇤
g(x⇤) = 0

µ⇤ � 0

g(x⇤)  0

rf(x⇤) + µ

⇤rg(x⇤) = 0



KKT Conditions
•                           

•                            

•   

•   

• KKT conditions

•  (1) 

•  (2) 

•  (3) 

•  (4) 

• (1)(3) —>  

• (4) —>  

• (1)(2) —> 

µ

⇤
g(x⇤) = 0

µ⇤ � 0

g(x⇤)  0

rf(x⇤) + µ

⇤rg(x⇤) = 0 2x⇤ � 4 + µ

⇤ = 0

µ

⇤(x⇤ � 3) = 0

µ⇤ � 0

µ⇤ 2 {0,�2}

µ⇤ = 0

x

⇤ = 2

x

⇤  3



KKT Conditions
•                           

•                            

•   

•   

• KKT conditions

• They are very important 

• In machine learning 

• Meet KKT conditions 

• Close duality gap 

• Out of our scope for now 

• But crucial for SVM

µ

⇤
g(x⇤) = 0

µ⇤ � 0

g(x⇤)  0

rf(x⇤) + µ

⇤rg(x⇤) = 0



Non-Convex
• What if NON-convex? 

• SGD or EM 

• Next lecture (when Jason start talking about EM) 

• He will show you guys a really nice example! 



Thanks!
Special Acknowledgement to Xiaochen Li



Appendix
• Sum of convex functions  

• My notes 

• https://docs.google.com/document/d/
1yA2obUuxXcxC84U1D4lfSyijFthHDUnkKNy3_Fr
wtCQ/edit?usp=sharing

https://docs.google.com/document/d/1yA2obUuxXcxC84U1D4lfSyijFthHDUnkKNy3_FrwtCQ/edit?usp=sharing

