## Optimization

Hongyuan Mei JHU-CLSP

## Model

- What is Model
- A set of assumptions over data
- The distribution constructed over data
- Defined based on the set of assumptions


## Model

- Observe a sequence of HHTTTH...
- To learn $P(X=H)=\theta_{1}$ and $P(X=T)=\theta_{2}$
- $X_{n} \sim P_{\theta}(X)$ where they are i.i.d.
- Probability of any sequence of length $N$
- $P_{\theta}\left(X_{1}, X_{2}, \ldots, X_{N}\right)=\prod_{n=1}^{N} P_{\theta}\left(X_{n}\right)$


## Likelihood

- $P_{\theta}\left(X_{1}, X_{2}, \ldots, X_{N}\right)=\prod_{n=1}^{N} P_{\theta}\left(X_{n}\right)$
- likelihood function of $\theta$ given observations $\left\{X_{n}\right\}_{n=1}^{N}$
- We want our model to well explain the data
- We estimate $\theta$ by maximizing likelihood
- So $\hat{\theta}$ is Maximum Likelihood Estimate


## Cross-Entropy

- We work in log-space to prevent underflow
- $\log P_{\theta}\left(X_{1}, X_{2}, \ldots, X_{N}\right)=\sum_{n=1}^{N} \log P_{\theta}\left(X_{n}\right)$
- log-likelihood function
- Maximize log-likelihood - Minimize cross-entropy
- Or loss $\ell=-\sum_{n=1}^{N} \log P_{\theta}\left(X_{n}\right)$


## Optimization

- Find $\hat{\theta}$ to minimize loss $\ell=-\sum_{n=1}^{N} \log P_{\theta}\left(X_{n}\right)$
- We call it optimization
- But HOW?
- Is there any properties that makes our life easier?


## Convexity

- A set $C$ is convex if and only if
- $\forall a, b \in C, \lambda a+(1-\lambda) b \in C$ for all $\lambda \in(0,1)$
- Line, segment, circles, half-plane, etc


## Convexity

- A function $f(x)$ is convex on $C$ if and only if
- $\forall x_{1}, x_{2} \in C$ and $\lambda \in(0,1)$
- $f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)$
- Strictly convex if
- $f\left(\lambda x_{1}+(1-\lambda) x_{2}\right)<\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)$


## Convex Optimization

- EASY to minimize convex function on convex set
- Any local minimum is a global minimum.
- Strictly convex - at most one global minimum.
- Solve by setting first-order derivative to 0
- $d f(x) / d x=0$ for scalar $x$
- $\nabla_{\mathbf{x}} f(\mathbf{x})=\mathbf{0}$ for vector $\mathbf{x}$


## Convex Functions

- Commonly used convex functions
- Affine $f(x)=a x+b$
- Quadratic $f(x)=a x^{2}+b x+c$ where $a>0$
- Negative logarithm $f(x)=-\log (x)$
- Sum of convex functions!


## Unconstrained

- One example:
- $f(x)=x^{2}-4 x+5$
- $d f(x) / d x=2 x-4=0$
- $x=2$


## Coin Flip

- Observe a sequence of HHTTTH...
- $N=100 \quad c(H)=46 \quad c(T)=N-c(H)=54$
- So...
- $\ell=-\sum_{n=1}^{N} \log P_{\theta}\left(X_{n}\right)$
- $\ell=-c(H) \log P(H)-c(T) \log P(T)$
- $\ell=-c(H) \log \theta_{1}-c(T) \log \theta_{2}$


## Coin Flip

- $\partial \ell / \partial \theta_{1}=-c(H) / \theta_{1}$ and $\partial \ell / \partial \theta_{2}=-c(T) / \theta_{2}$
- $\theta_{1}=\theta_{2}=\infty$ ?
- Probabilities can NOT go wildly!
- $\theta_{1}+\theta_{2}=1$
- So it is a constrained optimization problem
- How do we deal with it?


## Constrained

- $\ell=-c(H) \log \theta_{1}-c(T) \log \theta_{2}$
- $g=\theta_{1}+\theta_{2}-1$
- Optima at tangent point
- $\nabla \ell=\lambda \nabla g$
- $g=0$



## Lagrangian

- Optima at tangent point
- Why $\nabla \ell=\lambda \nabla g$ ?
- Normal vector of $\ell-\nabla \ell$
- Normal vector of $g-\nabla g$
- Parallel to each other



## Lagrangian

- Constrained $\longrightarrow$ Unconstrained
- $\mathcal{L}=\ell-\lambda g$ with parameters $\theta_{1}, \theta_{2}, \lambda$
- $\nabla \mathcal{L}=\nabla \ell-\lambda \nabla g=0$ i.e. $\nabla \ell=\lambda \nabla g$
- $\partial \mathcal{L} / \partial \lambda=-g=0$ i.e. $g=0$
- Converted by introducing Lagrangian Multiplier
- Still convex!


## Coin Flip

- $\mathcal{L}=-c(H) \log \theta_{1}-c(T) \log \theta_{2}-\lambda\left(\theta_{1}+\theta_{2}-1\right)$
- $\partial \mathcal{L} / \partial \theta_{1}=-c(H) / \theta_{1}-\lambda=0$
- $\partial \mathcal{L} / \partial \theta_{2}=-c(T) / \theta_{2}-\lambda=0$
- $\partial \mathcal{L} / \partial \lambda=-\theta_{1}-\theta_{2}+1=0$
- Now, let's do high school review
- $\lambda=-N \quad \theta_{1}=c(H) / N \quad \theta_{2}=c(T) / N=1-c(H) / N$


## Recitation Question

- Recitation Loglin 1(a)
- $\mathrm{Bwa}=1, \mathrm{Bwee}=2, \mathrm{Kiki}=3$
- Observe $c(1) / N=0.3 \quad c(2) / N=0.20 \quad c(3) / N=0.5$
- $\ell=-c(1) \log \theta_{1}-c(2) \log \theta_{2}-c(3) \log \theta_{3}$
- $\theta_{1}+\theta_{2}+\theta_{3}=1$
- Now do your exercise!


## Recitation Question

- $\mathcal{L}=\ell-\lambda g$
- $\ell=-c(1) \log \theta_{1}-c(2) \log \theta_{2}-c(3) \log \theta_{3}$
- $g=\theta_{1}+\theta_{2}+\theta_{3}-1$
- $\forall i \in\{1,2,3\} \quad \partial \mathcal{L} / \partial \theta_{i}=-c(i) / \theta_{i}-\lambda=0$
- $\partial \mathcal{L} / \partial \lambda=-\theta_{1}-\theta_{2}-\theta_{3}+1=0$
- $\lambda=-c(1)-c(2)-c(3)=-N$ and $\theta_{i}=c(i) / N$


## Inequality

- Wait! We may forget something...
- $\forall i \in\{1,2,3\} \quad 0 \leq \theta_{i} \leq 1$
- In NLP class, no worry about this
- But let's go beyond!


## Inequality

- One example:
- $f(x)=x^{2}-4 x+5$
- $x \leq 3$
- Pretend to NOT know the answer...


## Inequality

- $f(x)=x^{2}-4 x+5$
- $x \leq 3$




## Inequality

- $x^{*}>3$
- At the boundary!

- $x^{*} \leq 3$
- Unconstrained again!



## Another Example

- Optima out of constraints
- At the boundary!

- Optima under constraints
- Unconstrained again!



## Conversion

- $\mathcal{L}=f(x)+\mu g(x)$
- $f(x)=x^{2}-4 x+5$
- $g(x)=x-3$
- What we can say for $x^{*}, \mu^{*}$
- $\nabla f\left(x^{*}\right)+\mu^{*} \nabla g\left(x^{*}\right)=0$
- $g\left(x^{*}\right) \leq 0$
- And what?



## Conversion

- $\mu^{*} g\left(x^{*}\right)=0$ and $\mu^{*} \geq 0$
- Why?
- If $\mu^{*}>0$
- $g\left(x^{*}\right)=0$ (boundary!)
- Otherwise $\min \mathcal{L}=-\infty$
- If $\mu^{*}=0$
- Unconstrained again!



## KKT Conditions

- $\nabla f\left(x^{*}\right)+\mu^{*} \nabla g\left(x^{*}\right)=0$
- $g\left(x^{*}\right) \leq 0$
- $\mu^{*} g\left(x^{*}\right)=0$
- $\mu^{*} \geq 0$
- KKT conditions



## KKT Conditions

- $\nabla f\left(x^{*}\right)+\mu^{*} \nabla g\left(x^{*}\right)=0 \quad$ • $2 x^{*}-4+\mu^{*}=0$
- $g\left(x^{*}\right) \leq 0$
- $x^{*} \leq 3$
- $\mu^{*}\left(x^{*}-3\right)=0$
- $\mu^{*} \geq 0$
- $\mu^{*} g\left(x^{*}\right)=0$
- $\mu^{*} \geq 0$
- (1)(3) $\longrightarrow \mu^{*} \in\{0,-2\}$
- $(4) \longrightarrow \mu^{*}=0$
- $(1)(2) \longrightarrow x^{*}=2$


## KKT Conditions

- $\nabla f\left(x^{*}\right)+\mu^{*} \nabla g\left(x^{*}\right)=0$
- $g\left(x^{*}\right) \leq 0$
- $\mu^{*} g\left(x^{*}\right)=0$
- $\mu^{*} \geq 0$
- KKT conditions
- They are very important
- In machine learning
- Meet KKT conditions
- Close duality gap
- Out of our scope for now
- But crucial for SVM


## Non-Convex

- What if NON-convex?
- SGD or EM
- Next lecture (when Jason start talking about EM)
- He will show you guys a really nice example!


## Thanks!

Special Acknowledgement to Xiaochen Li

## Appendix

- Sum of convex functions
- My notes
- https://docs.google.com/document/d/

1yA2obUuxXcxC84U1D4IfSyijFthHDUnkKNy3 Fr wtCQ/edit?usp=sharing

