
Neural Datalog Through Time

Hongyuan Mei1, Guanghui Qin1, Minjie Xu2, Jason Eisner1

1Johns Hopkins University
2Bloomberg



Model How a Database Changes Over Time

1



Model How a Database Changes Over Time

1

200,000 facts right now

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam)

at(adam, chicago)

at(eve, nyc)



Model How a Database Changes Over Time

1

200,000 facts right now

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam)

at(adam, chicago)

at(eve, nyc)



Model How a Database Changes Over Time

1

200,000 facts right now

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam)

at(adam, chicago)

travel(eve, chicago)

50,000 possible events right now

at(eve, nyc)



Model How a Database Changes Over Time

1

200,000 facts right now

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam)

at(adam, chicago)

travel(eve, chicago)

50,000 possible events right now

at(eve, nyc)



Model How a Database Changes Over Time

1

200,000 facts right now

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam)

at(adam, chicago)

travel(eve, chicago)

50,000 possible events right now

at(eve, nyc)

little languageto specify a generative modelof event sequences 



Model How a Database Changes Over Time

1

200,000 facts right now

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam)

at(adam, chicago)

travel(eve, chicago)

50,000 possible events right now

at(eve, nyc)

little languageto specify a generative modelof event sequences 



Model How a Database Changes Over Time

1

200,000 facts right now

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam)

at(adam, chicago)

travel(eve, chicago)

50,000 possible events right now

at(eve, nyc)

triggering rules

little languageto specify a generative modelof event sequences 



Model How a Database Changes Over Time

1

200,000 facts right now

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam)

at(adam, chicago)

travel(eve, chicago)

at(eve, chicago)

50,000 possible events right now

triggering rules

little languageto specify a generative modelof event sequences 



Model How a Database Changes Over Time

1

200,000 facts right now

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam)

at(adam, chicago)

travel(eve, chicago)

at(eve, chicago)

50,000 possible events right now
little languageto specify a generative modelof event sequences 



Model How a Database Changes Over Time

1

200,000 facts right now

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam)

at(adam, chicago)

at(eve, chicago)

50,000 possible events right now
little languageto specify a generative modelof event sequences 



Model How a Database Changes Over Time

1

200,000 facts right now

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam)

at(adam, chicago)

at(eve, chicago)

dinner(eve, adam)

50,000 possible events right now

deductive rules

little languageto specify a generative modelof event sequences 



Model How a Database Changes Over Time

1

200,000 facts right now

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam)

at(adam, chicago)

at(eve, chicago)

dinner(eve, adam)

50,000 possible events right now

deductive rules

little languageto specify a generative modelof event sequences 



Model How a Database Changes Over Time

1

200,000 facts right now

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam)

at(adam, chicago)

at(eve, chicago)

dinner(eve, adam)

50,000 possible events right now

deductive rules

little languageto specify a generative modelof event sequences 



Model How a Database Changes Over Time

1

200,000 facts right now

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam) at(adam, chicago)

at(eve, chicago)

dinner(eve, adam)

50,000 possible events right now

deductive rules

little languageto specify a generative modelof event sequences 



Model How a Database Changes Over Time

1

200,000 facts right now

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam) at(adam, chicago)

at(eve, chicago)

dinner(eve, adam)

50,000 possible events right now
little languageto specify a generative modelof event sequences 



Deductive Rules, Triggering Rules

2

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam)

at(adam, chicago)

travel(eve, chicago)

at(eve, chicago)

dinner(eve, adam)

at(eve, nyc)



Deductive Rules, Triggering Rules

2

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam)

at(adam, chicago)

travel(eve, chicago)

at(eve, chicago)

dinner(eve, adam)

at(eve, nyc)

relation(X, Y) 
:- opinion(X, U), opinion(Y, U).

travel(X, P)
:- relation(X, Y), at(Y, P).

!at(X, Q)
ß travel(X, P), at(X, Q), P != Q.

at(X, P)
ß travel(X, P). 

dinner(X, Y) 
:- relation(X, Y), at(X, P), at(Y, P). 

relation(X, Y)
ß dinner(X, Y). 



Deductive Rules, Triggering Rules

2

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam)

at(adam, chicago)

travel(eve, chicago)

at(eve, chicago)

dinner(eve, adam)

at(eve, nyc)

relation(X, Y) 
:- opinion(X, U), opinion(Y, U).

travel(X, P)
:- relation(X, Y), at(Y, P).

!at(X, Q)
ß travel(X, P), at(X, Q), P != Q.

at(X, P)
ß travel(X, P). 

dinner(X, Y) 
:- relation(X, Y), at(X, P), at(Y, P). 

relation(X, Y)
ß dinner(X, Y). 

logic!



Deductive Rules, Triggering Rules

2

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam)

at(adam, chicago)

travel(eve, chicago)

at(eve, chicago)

dinner(eve, adam)

at(eve, nyc)

relation(X, Y) 
:- opinion(X, U), opinion(Y, U).

travel(X, P)
:- relation(X, Y), at(Y, P).

!at(X, Q)
ß travel(X, P), at(X, Q), P != Q.

at(X, P)
ß travel(X, P). 

dinner(X, Y) 
:- relation(X, Y), at(X, P), at(Y, P). 

relation(X, Y)
ß dinner(X, Y). 

which facts are in the database logic!



Deductive Rules, Triggering Rules

2

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam)

at(adam, chicago)

travel(eve, chicago)

at(eve, chicago)

dinner(eve, adam)

at(eve, nyc)

relation(X, Y) 
:- opinion(X, U), opinion(Y, U).

travel(X, P)
:- relation(X, Y), at(Y, P).

!at(X, Q)
ß travel(X, P), at(X, Q), P != Q.

at(X, P)
ß travel(X, P). 

dinner(X, Y) 
:- relation(X, Y), at(X, P), at(Y, P). 

relation(X, Y)
ß dinner(X, Y). 

which facts are in the database logic!

define a trainable neural architecture



Deductive Rules, Triggering Rules

2

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam)

at(adam, chicago)

travel(eve, chicago)

at(eve, chicago)

dinner(eve, adam)

at(eve, nyc)

relation(X, Y) 
:- opinion(X, U), opinion(Y, U).

travel(X, P)
:- relation(X, Y), at(Y, P).

!at(X, Q)
ß travel(X, P), at(X, Q), P != Q.

at(X, P)
ß travel(X, P). 

dinner(X, Y) 
:- relation(X, Y), at(X, P), at(Y, P). 

relation(X, Y)
ß dinner(X, Y). 

which facts are in the database logic!

that computes embeddings of the facts

define a trainable neural architecture



Deductive Rules, Triggering Rules

2

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam)

at(adam, chicago)

travel(eve, chicago)

at(eve, chicago)

dinner(eve, adam)

at(eve, nyc)

relation(X, Y) 
:- opinion(X, U), opinion(Y, U).

travel(X, P)
:- relation(X, Y), at(Y, P).

!at(X, Q)
ß travel(X, P), at(X, Q), P != Q.

at(X, P)
ß travel(X, P). 

dinner(X, Y) 
:- relation(X, Y), at(X, P), at(Y, P). 

relation(X, Y)
ß dinner(X, Y). 

which facts are in the database logic!

that computes embeddings of the facts

define a trainable neural architecture



Deductive Rules, Triggering Rules

2

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam)

at(adam, chicago)

travel(eve, chicago)

at(eve, chicago)

dinner(eve, adam)

at(eve, nyc)

relation(X, Y) 
:- opinion(X, U), opinion(Y, U).

travel(X, P)
:- relation(X, Y), at(Y, P).

!at(X, Q)
ß travel(X, P), at(X, Q), P != Q.

at(X, P)
ß travel(X, P). 

dinner(X, Y) 
:- relation(X, Y), at(X, P), at(Y, P). 

relation(X, Y)
ß dinner(X, Y). 

which facts are in the database logic!

that computes embeddings of the facts

define a trainable neural architecture



Deductive Rules, Triggering Rules

3

opinion(eve, apples)

opinion(adam, apples)

relation(eve, adam)

at(adam, chicago)

travel(eve, chicago)

at(eve, chicago)

dinner(eve, adam)

at(eve, nyc)

relation(X, Y) 
:- opinion(X, U), opinion(Y, U).

travel(X, P)
:- relation(X, Y), at(Y, P).

!at(X, Q)
ß travel(X, P), at(X, Q), P != Q.

at(X, P)
ß travel(X, P). 

dinner(X, Y) 
:- relation(X, Y), at(X, P), at(Y, P). 

relation(X, Y)
ß dinner(X, Y). 

which facts are in the database logic!

that computes embeddings of the facts

define a trainable neural architecture



Datalog è Neural Datalog Through Time

4

compatible(X, Y) :- likes(X, U), likes(Y, U)



Datalog è Neural Datalog Through Time

4

deductive rule

new fact :- old fact 1, old fact 2, …
compatible(X, Y) :- likes(X, U), likes(Y, U)



Datalog è Neural Datalog Through Time

4

deductive rule

new fact :- old fact 1, old fact 2, …
add to database

compatible(X, Y) :- likes(X, U), likes(Y, U)



Datalog è Neural Datalog Through Time

4

deductive rule

new fact :- old fact 1, old fact 2, …
add to database if

compatible(X, Y) :- likes(X, U), likes(Y, U)



Datalog è Neural Datalog Through Time

4

deductive rule

new fact :- old fact 1, old fact 2, …
add to database if these are in database

compatible(X, Y) :- likes(X, U), likes(Y, U)



Datalog è Neural Datalog Through Time

4

deductive rule

new fact :- old fact 1, old fact 2, …
add to database if these are in database

compatible(X, Y) :- likes(X, U), likes(Y, U)



Datalog è Neural Datalog Through Time

4

deductive rule

new fact :- old fact 1, old fact 2, …
add to database if these are in database

compatible(X, Y) :- likes(X, U), likes(Y, U)



Datalog è Neural Datalog Through Time

4

deductive rule

new fact :- old fact 1, old fact 2, …
add to database if these are in database

compatible(X, Y) :- likes(X, U), likes(Y, U)



Datalog è Neural Datalog Through Time

4

deductive rule

new fact :- old fact 1, old fact 2, …
add to database if these are in database

compatible(X, Y) :- likes(X, U), likes(Y, U)



Datalog è Neural Datalog Through Time

4

deductive rule

new fact :- old fact 1, old fact 2, …
add to database if these are in database

compatible(X, Y) :- likes(X, U), likes(Y, U)

likes(eve, apples) likes(adam, apples)

compatible(eve, adam)



Datalog è Neural Datalog Through Time

4

deductive rule

new fact :- old fact 1, old fact 2, …
add to database if these are in database

compatible(X, Y) :- likes(X, U), likes(Y, U)

likes(eve, apples) likes(adam, apples)

compatible(eve, adam)



Datalog è Neural Datalog Through Time

4

deductive rule

new fact :- old fact 1, old fact 2, …
add to database if these are in database

compatible(X, Y) :- likes(X, U), likes(Y, U)

likes(eve, apples) likes(adam, apples)

compatible(eve, adam)



Datalog è Neural Datalog Through Time

4

deductive rule

new fact :- old fact 1, old fact 2, …
add to database if these are in database

compatible(X, Y) :- likes(X, U), likes(Y, U)

likes(eve, apples) likes(adam, apples)

compatible(eve, adam)

opinion(adam, apples)opinion(eve, apples)

relation(eve, adam)



Datalog è Neural Datalog Through Time

4

deductive rule

new fact :- old fact 1, old fact 2, …
add to database if these are in database

triggering rule

new fact ß event, old fact 1, old fact 2, …



Datalog è Neural Datalog Through Time

4

deductive rule

new fact :- old fact 1, old fact 2, …
add to database if these are in database

triggering rule

new fact ß event, old fact 1, old fact 2, …
when



Datalog è Neural Datalog Through Time

4

deductive rule

new fact :- old fact 1, old fact 2, …
add to database if these are in database

triggering rule

new fact ß event, old fact 1, old fact 2, …
when

this 
happens



Datalog è Neural Datalog Through Time

4

deductive rule

new fact :- old fact 1, old fact 2, …
add to database if these are in database

triggering rule

new fact ß event, old fact 1, old fact 2, …
when while these are in database

this 
happens



Datalog è Neural Datalog Through Time

4

deductive rule

new fact :- old fact 1, old fact 2, …
add to database if these are in database

triggering rule

new fact ß event, old fact 1, old fact 2, …
add to database when while these are in database

this 
happens



Datalog è Neural Datalog Through Time

4

deductive rule

new fact :- old fact 1, old fact 2, …
add to database if these are in database

triggering rule

new fact ß event, old fact 1, old fact 2, …
add to database when while these are in database

this 
happens

! old fact ß event, old fact 1, old fact 2, …



Datalog è Neural Datalog Through Time

4

deductive rule

new fact :- old fact 1, old fact 2, …
add to database if these are in database

triggering rule

new fact ß event, old fact 1, old fact 2, …
add to database when while these are in database

this 
happens

! old fact ß event, old fact 1, old fact 2, …
when



Datalog è Neural Datalog Through Time

4

deductive rule

new fact :- old fact 1, old fact 2, …
add to database if these are in database

triggering rule

new fact ß event, old fact 1, old fact 2, …
add to database when while these are in database

this 
happens

! old fact ß event, old fact 1, old fact 2, …
when this 

happens



Datalog è Neural Datalog Through Time

4

deductive rule

new fact :- old fact 1, old fact 2, …
add to database if these are in database

triggering rule

new fact ß event, old fact 1, old fact 2, …
add to database when while these are in database

this 
happens

! old fact ß event, old fact 1, old fact 2, …
when while these are in database

this 
happens



Datalog è Neural Datalog Through Time

4

deductive rule

new fact :- old fact 1, old fact 2, …
add to database if these are in database

triggering rule

new fact ß event, old fact 1, old fact 2, …
add to database when while these are in database

this 
happens

! old fact ß event, old fact 1, old fact 2, …
delete when while these are in database

this 
happens



Computing the Embeddings

5



Computing the Embeddings

5

relation(eve, adam)



Computing the Embeddings

5

relation(X, Y) :- opinion(X, U), opinion(Y, U)

relation(eve, adam)



Computing the Embeddings

5

relation(X, Y) :- opinion(X, U), opinion(Y, U)

relation(eve, adam)



Computing the Embeddings

5

relation(X, Y) :- opinion(X, U), opinion(Y, U)

opinion(eve, apples)
opinion(adam, apples)

relation(eve, adam)



Computing the Embeddings

5

relation(X, Y) :- opinion(X, U), opinion(Y, U)

opinion(eve, apples)
opinion(adam, apples)

relation(eve, adam)



Computing the Embeddings

5

relation(X, Y) :- opinion(X, U), opinion(Y, U)

opinion(eve, apples)
opinion(adam, apples)

relation(eve, adam)



Computing the Embeddings

5

relation(X, Y) :- opinion(X, U), opinion(Y, U)

opinion(eve, apples)
opinion(adam, apples)

= x x+

relation(eve, adam)



Computing the Embeddings

5

relation(X, Y) :- opinion(X, U), opinion(Y, U)

opinion(eve, apples)
opinion(adam, apples)

= x x+

relation(eve, adam)



Computing the Embeddings

5

relation(X, Y) :- opinion(X, U), opinion(Y, U)

opinion(eve, apples)
opinion(adam, apples)

= x x+

relation(eve, adam)



Computing the Embeddings

5

relation(X, Y) :- opinion(X, U), opinion(Y, U)

opinion(eve, apples)
opinion(adam, apples)

= x x+

opinion(eve, politics)
opinion(adam, politics)

relation(eve, adam)



Computing the Embeddings

5

relation(X, Y) :- opinion(X, U), opinion(Y, U)

opinion(eve, apples)
opinion(adam, apples)

= x x+

opinion(eve, politics)
opinion(adam, politics)

relation(eve, adam)



Computing the Embeddings

5

relation(X, Y) :- opinion(X, U), opinion(Y, U)

opinion(eve, apples)
opinion(adam, apples)

= x x+

opinion(eve, politics)
opinion(adam, politics)

relation(eve, adam)



Computing the Embeddings

5

relation(X, Y) :- opinion(X, U), opinion(Y, U)

opinion(eve, apples)
opinion(adam, apples)

= x x+

opinion(eve, politics)
opinion(adam, politics)

different inputs

same params

relation(eve, adam)



Computing the Embeddings

5

relation(X, Y) :- opinion(X, U), opinion(Y, U)

opinion(eve, apples)
opinion(adam, apples)

= x x+

opinion(eve, politics)
opinion(adam, politics)

different inputs

same params

relation(eve, adam)



Computing the Embeddings

5

relation(X, Y) :- opinion(X, U), opinion(Y, U)

opinion(eve, apples)
opinion(adam, apples)

= x x+

opinion(eve, politics)
opinion(adam, politics)

different inputs

same params

married(eve, adam)

relation(eve, adam)



Computing the Embeddings

5

relation(X, Y) :- opinion(X, U), opinion(Y, U)

opinion(eve, apples)
opinion(adam, apples)

= x x+

opinion(eve, politics)
opinion(adam, politics)

different inputs

same params

married(eve, adam)

non-linear pooling

relation(eve, adam)



Computing the Embeddings

5

relation(X, Y) :- opinion(X, U), opinion(Y, U)

opinion(eve, apples)
opinion(adam, apples)

= x x+

opinion(eve, politics)
opinion(adam, politics)

different inputs

same params

married(eve, adam)

non-linear pooling

𝜎(              )
+

LSTM cells: 
summarize past events
that are relevant to this fact 

relation(eve, adam)
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extra dimension for probability

+

...

...
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7

+𝜎(              )

a little like stacked LSTM

deductive :- rules 

triggering ß rules 

deep at a single time step

temporally recurrent across time steps
LSTM cells
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