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Neural Hawkes process (NHP: Mei & Eisner, NeurIPS 2017)
Missingness mechanism that determines missing events

: What / When / How-Many missing events?
Why? Impute past to predict future; train with Monte Carlo EM

t
Define optimal transport distance
• Aligning two events in and has cost
• An unaligned event in or has cost
• Find optimal alignment by dynamic programming

Seek with small expected loss
• Until does not change, do:
• Align to all particles
• Move, delete and insert events

Finding: for each , actual improvement is always in
the positive direction of the steepest improvement

Minimize between and

• includes missingness mechanism: don’t propose what you know won’t be missing!
• Inclusive KL: learn to propose every that is probable under
• Exclusive KL: learn to avoid proposing any that is not probable under

t

Each point is a single gold seq, showing of proposing it under
the two methods
Datasets:
• 10 synthetic (left)
• Elevator (mid)
• NYC taxi (right)

Draw from a proposal distribution and weight them
Example: stochastically impute a taxi’s pick-up events given its observed drop-off events .
Below shows one sequential step, which determines the next event after at time ---either an
unobserved event at time or the next observed event at .
• Particle filtering proposes next event conditioned only on history summarized as by LSTM

• Particle smoothing also considers future summarized as by a right-to-left LSTM
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Overview

Training the Proposal Distribution (only for particle smoothing)

Sequential Monte Carlo

Does particle smoothing help (vs. filtering)?
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particle filtering
particle smoothing
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