
125 250 500 1000 2000 4000 8000 16000
number of training sequences

9

8

7

6

5

lo
g
-l

ik
e
lih

o
o
d
 p

e
r 

e
v
e
n
t

Experiments on real-world social media datasets 
• Retweet (top): long sequences with  
• MemeTrack (bottom): short sequences with
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Neural Hawkes process:  
• Continuous-time LSTM 
• Hidden state  
• Cell memory  
•    
• Extra gates to compute          and

Hawkes

An event stream from a neural Hawkes process 
Time     and type     depend on details of past history and on each other 

Events happen at random times  
At time    , there occurs an event of type 
Given past events, what might happen next, and when? 
• Generative model    
• Medical: patient’s visits, tests and diagnoses  
• Online shopping: purchasing and feedback  
• Social media: posts, shares, comments 
• Other: quantified self, news, dialogue, music, etc  
Traditional model is a Hawkes process [1] 
• Each event type has an intensity        
• Each event token occurs with probability          
• Past events temporarily excite future events 
•        

Neural Hawkes process        vs. similar work        [2] 
• Prediction error for type (upper) and time (lower)

Train the model by maximizing log-likelihood 

• Total intensity 
• Integral estimation by Monte Carlo simulation 
Minimum Bayes Risk prediction 
• Density for     is  
• Time prediction  
• Type prediction  
Thinning algorithm for sampling sequences

Experiments on artificial datasets 
• Models try to fit data generated by each other 
• Oracle model performance —

The Neural Hawkes Process
A Neurally Self-Modulating Multivariate Point Process 
Hongyuan Mei and Jason Eisner  
Center for Language and Speech Processing, Department of Computer Science, Johns Hopkins University

Overview Model Algorithms

Experiments (many more in paper)
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Missing data experiments 
★ Censor all events of some types 
★ neural Hawkes > Hawkes process 
★ Consistent over all combos
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[1] Hawkes, Alan G. Spectra of some self-exciting and mutually exciting point processes. 1971. [2] Du, Nan, et. al. Recurrent marked temporal point processes: Embedding event history to vector. 2016.
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Neural Hawkes is winner (4/5, 5/5, and 5/5) on type prediction 
No clear winner on time prediction 


